

SETO CSP Program Summit 2019

Sodium Thermal Electrochemical Converter (Na-TEC) Power Block for Distributed CSP

Shannon K. Yee, Assistant Professor

Georgia Institute of Technology

Project Summary

Goal: Develop a *dual-stage modular* sodium thermal electrochemical converter (Na-TEC) heat engine power block with an estimated efficiency (η_T) of *51.3%*, which can be potentially integrated with either a *small-*

scale dish solar or large-scale heliostats and parabolic trough CSP.

Key Advantages

- 1. High second law efficiency (>90% of the Carnot limit)
- 2. High specific power (up to 0.2 kW/kg)
- 3. Closed system operation with no moving parts
- 4. Scalable to multiple power levels (100 W -10 kW)
- 5. Amenable to cogeneration using rejected heat

Year 2

Year 3

Ion Expansion

Heat Engine

Year 1

Drv

Operation of Na-TEC: Single- vs. Dual-stage

Dual-stage

The performance of the dualstage device will be compared against a single-stage Na-TEC

Limia et al., J. Power Sources (2017)

Key Technical Challenges and Solutions

- 1. Beta"-Alumina Solid Electrolyte (BASE) fabrication
- 2. Metal to Ceramic joint

Partnered with Ionotec, Ltd. (United Kingdom)
They have expertise in BASE fabrication and metal
to Ceramic join using thermocompression bonding
process.

Key Technical Challenges and Solutions (cont'd)

3. Passive pumping demonstration

Test rig for demonstration

Experiments are currently in progress to demonstrate passive pumping concept

Four Potential Impacts

- This power block can be deployed for both:
 - ✓ Small-scale dish solar (displacing dish Stirling)

✓ Large-scale heliostats and parabolic trough

 Cogeneration of heat and power: Suitable for CHP applications Lower costs (6 cents/kWh-target depending on the region, at an estimated cost of < \$900 for kW_e unit

 This technology is well suited for dry air-cooling

Project Team & Facilities

- Alexander Limia (Grad student)
- Jong Ha (Grad student)
- Abhishek K. Singh (Postdoctoral Fellow)
- Peter A. Kottke (Sr. Research Engineer)
- Andrey Gunawan (Research Engineer II)
- Andrei G. Fedorov (Co-PI)
- Seung Woo Lee (Co-PI)
- Shannon K. Yee (PI)
- <u>S</u>calable <u>T</u>hermal <u>E</u>nergy <u>E</u>ngineering <u>L</u>aboratory
- Heat Lab (heat.gatech.edu)

SETO CSP Program Summit 2019

Additional slides

Scenario 1: CSP + Na-TEC + Fuel

Scenario 2: CSP + Na-TEC + Batteries

 $\eta \sim 25 \%$

On Sun

Scenario 3: CSP + Na-TEC + Direct Heat Storage

Scenario 4: CSP + Na-TEC + Hybrid Storages

 $\eta \sim 29 \%$

On Sun

Capital Cost of CSP-Na-TEC Systems in Four Scenarios

LCOE Comparison

- LCOE comparison of 4 considered scenarios
- Current fuel price 1 cents/kWh
- Discount rate variability 3 to 10%
- Fuel is having lowest LCOE but direct heat storage is also prices competitive

LCOE Comparison – including future fuel price

- LCOE comparison of 4 considered scenarios
- Current fuel price 1 cents/kWh
- Discount rate variability 3 to 10%
- Fuel is having lowest LCOE but direct heat storage is also prices competitive

For future fuel prices – similar LCOE between the scenarios of using fuel and direct heat storage